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LATENT VARIABLE MODELING OF GROWTH WITH MISSING DATA
AND MULTILEVEL DATA!
Bengt Muthen, CRESST/University of California, Los Angeles

1. Introduction

The aimn of this paper is to describe three important methods areas of
multivariate analysis that are not always thought of in terms of latent variable
constructs, but for which latent variable modeling can be used to great
advantage: random coefficients describing individual differences in growth;
unobserved variables corresponding to missing data; and variance
components describing data from cluster sampling. An cducational
achievement data set will be described as a motivating example. Using the
features of the example, it will be shown that all three topics can be simply
expressed in terms of latent variable modeling which fits into existing and
generally available structural modeling seftware. This development makes a
connection between wmainsiream statictical methods and work by
psychometricians and other methodologists interested in latent variable
modeling. Having put the methodology in a general latent variable context,
several interesting extensions of the statistical analyses are evident.

2. A General Latent Variable Framework

Analysis of latent variable models is most often carried out by minimizing
the following fitting function

P
(1) ), (Np[InI Syl tr (2 Tp) -InlSl-r ]} N,
p=1

where

(2) Tp=Sp+(§p'Hp)(§p'Up)'-

1T thank Ginger Neison, who provided helpful research assistance.
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In maximume-likelihood (ML) estimation of conventional structural
equation models with latent variables, this is the fitting function
corresponding to independent random samples from P populations with
sample sizes Np and total sample size N. Here, an - Jimensional vector y, say,
is observed with sample covariance matrix Sp, sample mean vector p |
population covariance matrix Xy, and population mean vector Hp. The terms
containing In ISpl - r are offsets so that a perfectly fitting model has the
function value of zero. The sample covariance matrices Sp are the ML
estimates of the unsestricted Zp matrices and are therefore divided by Np, not
Np - 1. Multiplying the minimum value for any model by 2 x N then gives the
value of the likelihood-ratio chi-square test of the Hy model against the Hy
model of unrestricted mean vectors pp and covariance matrices Zp. Many
models do not impose any restrictions on pp, in which case the second term on
the right-hand-side of (2) vanishes and only covariance matrices are involved
in the estimation. The simultaneous analysis of several populations is
considered when the populations have parameters in common, so that equality
constraints of parameters across populations are invoked.

The specification of latent variable models in terms of pp and 2y is
described in several sources (see, e.g., Joreskog, 1977; Muthen, 1983). One
common framework is as follows. For a certain population a linear
measurement model for a latent variable vector 1 is specified

(3) y=UV+AN+E,

where v and A contain measurement intercept and loading (slope)
parameters, respectively, and € denotes a vector of measurement errors. In
addition, linear structural equations are specified for 7,

4) n= ou+Bn+{,

where o and B contain structural regression intercepts and slopes,
respectively, and { denotes a vector of residuals. With E(n) = o, V(e) =0, V({) =
¥, usual assumptions give the mean and covariance structure for the y vector as

(5) upu=v+Al-Brlg,
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6 T=A0-BYl'¥(-Brl'a+e.

3. AMotivating Example

The example concerns longitudinal observations on mathematics
achievement in grades 7-12 collected in the U.S. within the National
Longitudinal Study of American Youth (LSAY) (Miller, Suchner, Hoifer,
Brown, & Pifer, 1991). Two cohorts were followed, one spanning grades 7-10
and the other grades 10-12. The mathematics curriculum is quite varied in the
U.S. and students are likely to show differences in growth as a function of
differences in background characteristics such as course taking and gender.
The test measures mathematics skills in a number of subtopics including
algebra, probability & statistics, geometry, measurement, and arithmetic.
Topic-specific subtest scores are of interest, but since there is a rather small
number of items within subtopics, there is a need to allovs for measurement
error in such subscores, for example, by specifying a factor-analytic

measurenient model.

In order to measure different ability levels, the test items that are
administered vary across grades and groups of students within grades. The
various test forms do, however, have many items in common so that the
various test forms can be equated. Due to the large variation in mathematics
achievement, an adaptive testing strategy was employed in the LSAY in order
to avoid floor and ceiling effects and to maximize the information obtained on
the students' achievement level. Given the performance at the first testing
occasion, an easy, medium, or hard test form was chosen for the next grade
with possible test form alterations also in subsequent grades. The test forms
also differed across grades within difficulty designation. Table 1 shows the
different groups of individuals in the youngest cohort taking different sets of
tests. It is seen that the adaptive testing strategy gives rise to certain patterns
of missing data. Missing data also occurs due to attrition so that not all
students have observations for all grades.

As is typical for large-scale educational data, the LSAY data are obtained
through multi-stage, complex sampling. A key feature is that about 60
students are randomly sampled within each of about 60 schools. It is well-
known that assuming simple random sampling when data have in fact been
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obtained by cluster sampling leads to deflated standard errors of estimates
(see, e.g., Skinner, Holt, & Smith, 1989). This effect is often described in terms
of the “design effect” (deff), taken as the ratio of the corresponding variance
estimates. To illustrate the cffect of this cluster sampling feature, intraclass
correlations were calculated for a set of achievement variables obtained at the
seventh grade. Testlets corresponding to topic-specific sums of items scored
right/wrong were used (or the following topics (intraclass correlation in
parenthesis): algebra (.03), probability & statistics (.15), geometry (.12),
measurement (.12), methods (.05), numbers & operations; (.10), numbers &
operationss (.08), numbers & operationsg (.09), numbers & operations, (.13),
organization (.09). Several intraclass correlations are larger than .10. Using
the deff formula for a variance estimate of a mean, 1+ (c-1) p for cluster size ¢
and intraclass correlation p (Cochran, 1977, p. 242), gives a sizeable design
effect of about 7 due to the large cluster size of 60. The intraclass correlations
may in fact be deflated since the within-school variance is likely to contain a
large amount of measurement error variance (see Muthen, 1991).

4. Modeling of Individual Differences in Growth

For the example discussed in the previous section, consider an
achievement score yy; for individual i at time point t where t corresponds to the
different grades (t = 0, 1, ..., T, say),

(M) yi=01+B3t+ 8y

In (7), oj and B are individual-specific parameters describing initial level
of achievement and rate of lcarning, while { represents a residual. The
characteristic feature of this model is that the regression intercepts and slopes

are random coefficients that vary over individuals, possibly as a function of
individual-specific values of a time-invariant covariate z;,

(8) 0 = 0+ Yy 2i + Ogj

(9) Bi=B+7Yp2i+3p
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Here, o and  represent overall values, Y's are regression paramecters,
and 8's represent residuals. The residuals for the intercepts and the slopes
may he correlated so that the growth rate may be related to initial status. As

an example, z may represent participation in enriched or algebra classes, in
which case the y's are likely to be positive. The random intercepts o; and

random slopes B; may also be estimated for each individual so that an
individual-specific growth curve can be derived.
It may be noted that instead of assuming growth that is linear in t, as in

(7), any function of t may be used, including functions involving parameters to
be estimated, such as logistic growth and exponential decline.

The model implies growth in means and variances as a function of t and

Z,

(10) Elytlzi)=c+Yyz+B+yzkt

(11) Vyg 2 =02+ 2t 05+ 12 0% + o2

The model may be extended by adding a time-varying covariate xi¢; to the

growth curve of (7),
(12)  yti=o5+PBit+ Yo xti+ Gt

In the context of the present achievement example, Xt; may represent amount

of course work prior to time point t for individual 1.

The above growth model can be seer as a model with latent variables. As
is clear from (7)—(9), o and B; can be viewed as latent variables instead of
random parameters (Muthen, 1991, 1992). Both aj and p; are unobserved i.i.d.
variables varying across individuals. Because t does not vary over individuals,
t can be viewed as a fixed regression parameter for the variable ;. The model
fits into the general framework of equations (3)«(6) letting v contain ¢4 and ;.

This type of modeling is an example of the latent curve analysis of Tucker,
Meredith, McArdle and others (see, e.g., Meredith & Tisak, 1990). The growth
model imposes restrictions on both the mean vector and the covariance matrix

v,
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for the observed variables. In this way, boih p and ¥ of (1) are used in the

estimation. A single population is used.

The structural modeling approach to longitudinal data makes for a very
flexible modeling framework. Multiple indicators can be handled so that
growth pertains to latent variables without measurement error. In the math

achievement example, it is reasonable to assume that the testlets measure a
single facior nyj. In this case the factor ny replaces yi; in (7) and the testlets
correspond to multiple indicators ytjj as in (3),

(13) ytij = vj+ M nti +etij »

j =1,2, ..., d, where v is a raeasurenient intercept parameter, A is a
measurement loading parameter, and € represents measurement error
assumed to be uncorrelated with n and among themselves. Binary and
ordered categorical variables can also be handled in this framework (Muthen,
1983, 1992).

5. Modeling of Missing Data

For the motivating example discussed in Section 3, Table 1 showed the
patlern of missing data. The missingness was both by design due to the use of
adaptive testing and due to attrition. Missing data theory is presented in Little
and Rubin (1987) and is discussed in the latent variable context by Allison
(1987) and Muthen, Kaplan, and Hollis (1987). Following Muthen et al. (1987),
we may modify the measurement model of (3) as

(14) y*=v+AMm+e

(15) s*=Ty*+9d

Here, y* and s* are sets of r continuous, latent variables assumed to be
multivariate normal. The residual vector & is possibly correlated with 1 and ¢,
Using a threshold parameter 1y, each s*j; variable defines a probit regression
describing the propensity for y*i; to be observed for individual i,
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N op K
(16) y” ’lfsij > "Cj
A . .
v missing, otherwise

Returning to the missing data example of Table 1, consider the f{irst and
last missing data patterns. Let the observed test scores in grade 7 be denoted y;

and the scores of the test sequence E, E, E in grades 8, 9, 10 be denoted yo. In
this way, there is no missingness on y; for either pattern, whereas the last
patlern has missing data for yp. Lel yo contain p variables, define n; as

% * *
(17) Pr (Sll < T]_,S.l2 < Tz, veey S]p

and let ¢ denote multivariate normal densities. The likelihood component for a
sampi¢ unit in the last missing data pattern is then obtained by integrating
over the p latent variables y*9 in a truncated normal distribution,

A7) o (i) mi | of o o] mo Gz lyi)dy; ds’
This gives
(18) ¢ (yu) | ..} o (s*ly;)ds*

The conditional normal density inside the integrals of (18) depends on the
specification of the relationship between s* and y* in (14) and (15). Consider
the case where conditional on yyj, s* is independent of y*,, so that s* is only
influenced by y*; in (15). In our example, y*; is observed as y;. Then the
conditiorial density in (18) does not involve parameters of the latent variable
model but only parameters describing how y; predicts the missingness on y*,.
In this case the missing data mechanism is “ignorable"” and correct ML
estimation of the latent variable model is obtained using only the ¢ ( y;; ) term
in (18) corresponding to the data that are not missing.
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In our example, ignorability for the data that are missing by design holds
if the test form for a certain grade is indeed only dependent on the performance
on the test in the previous year. Attrition may be predicted by factors that also
influence the performance on the tests taken. Missingness by attrition is
ignorable if conditional on such factors, the values of the missing test scores
are independent of the values of the observed test scores.

Again considering the first and last missing data patterns of Table 1, and
assuming ignorability, (18) suggests that the log likelihood may be written as

N C
(19) log L= log ¢ (yii)+ Y, log ¢ (yailyii)

i=1 i=1

where N is the total number of cases in the two patterns and C is the number of
individuals that have complete data. The second term on the right hand side of
(19) contains the regression parameters, while the first term contains the
parameters of the marginal distribution of y;. As pointed out by Anderson
(1957), in the case of an unrestricted model the parameters of these two parts
can be estimated separately and the estimates have closed-form expressions.
For the case of a latent variable model, the restricted case, a closed-form
expression does not, however, exist and the advantage of writing the like'ihood
in the form of (19) disappears. Muthen et al. (1987) instead proposed the use of
the equivalent form

C N
(20) log L= log 0 (y1i,y2i)+ », logé (yn)

1=1 1=C+1

The two terms of the right hand side of (20) involve two diﬂ'erent-'groups of
individuals corresponding to the two different patterns. Equation (20) shows
that the standard multiple-group structural modeling fitting function of (1)
can be used for the estimation. Under ignorability, a simultaneous analysis of
the two groups, using different number of observed variables in the two groups
and across-group equality restrictions on common parameters yields ML
estimates of the latent variable model parameters. Muthen et al. (1987)
describe how to set up this analysis using structural modeling programs and
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show how the model can be tested. The approach may be generalized to involve
groups corresponding to all the different missing data patterns of Table 1.

6. Modeling of Multilevel )ata

The final area to be discussed in terms of la‘ent variable modeling is that
of variance components describing data from c'uster sampling. In the math
achievement example, students were samvpled within schools and the
intraclass correlation coefficients showed that the degree of dependence
among student observations from the same school was quite large. In order
for the fitting function of (1) to give proper ML estimates, standard errors of
estimates, and chi-square measure of model fit, this deviation from simple
random sampling needs to be taken into account. Statistical theory for such
situations is described in Skinner, Holt, and Smith (1989). Recently,
psychometricians have extended this work to encompass latent variable
modeling (see, e.g., McDonald & Goldstein, 1989). For an overview, see
Muthen and Satorra (1989), Muthen (1989) and Muthen and Satorra (1991). In
this work, parameters are added to those of conventional modeling in order to
properly describe the variation due to the different stages of cluster sampling.
This has given rise to the name multilevel modeling (see, e.g., Bock, 1989).

The following model describes both the schocl- and student-level variation.
Letting the index g denote school, we may consider the r-dimensional vector of
observed scores Yei for individual 1 and a gq-dimensional vector Zg for school g
as follows. We may assume g = 1, 2, ..., G independently observed groups with
i=1,2,.., Ng individual observations within group g and arrange the data
vector for which independent observations are obtained as

2D dg'=(zg' yg1' ¥g2, - YgNg ) »

where we note that the length of dg varies across groups. The mean vector and
covariance matrix of dg are assumed to have the structures

(22) Hdg' =[ ug, 1Ng' ® .uy' )
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). symmetric

(23) Xy, =
lNg®Eyz ]Ng®zw+]Ng 1Ng'®ZB

where Iyg is an identity matrix of dimension Ny, 1yg is a unit vector of length
Ng and the symbol ® denotes the Kronecker product.

Assuming multivariate normality of dg leads to the minimization of the
ML fitting function

G
(24) ) {logl g, + (dg -t ) Zd) (dg - ita,) )
g=1 -

As shown in Muthen (1989, 1990), the expression in (24) may be rewritten
in a form that both avoids using parameter arrays involving the number of
observations per group and fits in conventional structural equation models.
Reducing the summation from G groups to D, corresponding to the number of
distinct group sizes, the ML fitting function may be written as

D
(25) Y Go{In | Zgg|+1tr [ Zag™" (Sma+Na(¥g- 1) (Va-p) )]} +
d

+(N-G){In |Zw|l+tr [ZHSpw]),

where d is an index denoting a distinct group size category with group size Ny,
Gg denotes the mumber of groups of that size,

Ng Z,2 symmetric

(26) Z44 =

Spd denotes a between-group matrix
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Gy

_ 1 Zdk - 2 Y
(27) Spa=Ng G4 211[de_yd}[(ldk-ld)(de-yd)]

(28) ¥y - =[§d'“ZJ
a-i ¥d - Uy

with Zd and Yd representing the sample mean vectors in group category d, and
Spw is defined as the usual pooled-within sample covariance matrix

Ng

G
(29) Spw=(N-G)" Y N (yu-9g) (yu-Yg) '

g=11i=1

On comparison with (1) it is seen that (25) may be viewed as an analysis of D+1
populations with certain parameter equality constraints across populations.

ML estimation by optimization of (25) is, however, cumbersome with
many different group sizes, both in terms of computational work and in terms
of input specifications for the software. Muthen (1990) proposed a simpler, ad
hoc estimator which gives results close to those of ML, using the fitting

function
cx, symineltric c,, symmetric !

(30) G { In w5 +ir w5 5 ]+
Czyz Sw+cClp Czyy_ Xw+CcZp
+(N-G){InlZwl+ir[Z# Spw ]},

where

31)

CZ (2g-7)(25-2) symmetric
g
Sg=(G-1)!

CXGMN DY Ng(¥g-F)(2g-2) ) Ne(¥g-¥)(¥g-¥)
£

g

L)
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G
(32) c=[N*- ) N3] [N(G-1)}

g=1
and Spw is as before. On comparison with (1) it is seen that (30) corresponds to
an analysis with two populations, one for the between part and one for the
within part.

For the math achievement test scores of y, a latent variable structure such
as in (6) may be formulated for ZB and Zw not neccessarily using the same
structure. Muthen (1990) discusses different types of models that may be of
interest. The within structure of ZW would still use a single-factor model
since it pertains to the student-level structure. The between structure ZB
describes across-school variation in math achievement and it is harder to
postulate ar. a priori model for this variation. Experience has shown,
however, that a single-factor model often captures the covariation in ZB quite
well. The school-level variables zg May be exemplified by indicators of whether
or not the school "tracks" the 7th- and 8th-grade math programs. Muthen
(1990) gives an example of a latent variable model with Zg variables influencing
the between-part of the y variation.

7. Discussion

A thorough analysis of the math achievement example of Section 3 calls
for the use of modeling with random coefficients describing individual
differences in growth, unobserved variables corresponding to missing data,
and variance components describing data from cluster sampling. The
previous three sections have described how each of these modeling features
may be approached in a general latent variable context using existing
structural equation software. The fitting function of (1) is used in all cases,
either in one or in several populations using covariance matrix structures and
possibly also mean vector structures. In an actual analysis of this data set, the
three approaches need to be combined. This analysis will not be carried out
here, but it is clear that the use of the fitting function of (1) accomplishes also
this complex task.

This paper has made connections brtween mainstream multivariate
statistice and work by psychometricians and other methodologists interested in
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latent variable modeling. Viewing the methodology from a general latent
variable perspective, points to several interesting extensions of the statistical

analyses.
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